Socket Programming: Creating
Network Applications

Socket Programming with UDP
Socket Programming with TCP

QUICK REVIEW

What is a SOCKET?

< To the kernel, a socket is an endpoint of communication.

< To an application, a socket is a file descriptor that lets the application
read/write from/to the network.

Clients and servers communicate with each by reading from
and writing to socket descriptors.

Kinds of Sockets:

< Datagram Sockets (or UDP Sockets).
< Steam Sockets (or TCP Sockets)
< Row Sockets (or Raw IP sockets)

The Socket Interface :

SEN g
Application HTTP, FTP. SMTP
Upper & | Presentation | e 6lF, PG application
Layers
Session AppleTalk, WinSock
------------- \ B
Transport TCP, UDP, SPX TCP UDP
IP. ICMP, IPX
Lower Network router IPv4, IPvA
Layers : Ethemet, ATH | _
y Data Link switch, bridge ji'}'lﬂl
s : Ethemet, Token Ring nyer
r 2 ! Phy5|cal hub, repeater and
- hardware

The Socket Interface :

) &
Application HTTP, FTP, SMTP Socket API
Upper { | Presentation | JPEs.6F. e application
Layers
Session AppleTalk, WinSock
............. : e a e ol
Transport TCP, UDP, $PX TCP UDP
1P, ICHP, IPX
Lower Network router IPv4, IPvA
Layers | ; Ethemet ATM I _
Y Data Link switch, bridge ji'}'lﬂ'
g : Ethemet, Token Ring VS
.- 2 ! Phy5|cal hub, repeater and
- hardware

The Socket Interface :

Where is the socket programming interface in relation to the protocol stack?

Application Layer

/

SE &
Application | ure,Fre,sure Socket API
Upper J | Presentation I soz6. 6F, wees application
Layers
Session AppleTalk, WinSock
............. : - - L — e —— |__
Transport TCP, UDP, $PX TCP UDP
IP, ICMP, IPX
Lower Network router IPv4, IPvA \
‘ : Ethemet, ATH | :
Layers Data Link :::tech bridge device Transport Layer
. driver
Res . Ethemet, Token Ring
I_ o \ Phy5|cal hub, repeater and
o hardware

On the server-side:A server has a socket that is bound to a specific port
number. The server just waits, listening to the socket for a client to make a
connection request.

On the client-side: The client knows the hostname of the machine on which the
server is running and the port number on which the server is listening.

connection
request

Sener ,
client

— = O 3

Ll

If everything goes well, the server accepts the connection.The server gets a
new socket bound to the same local port and also has its remote endpoint set
to the address and port of the client.

SERET connection

—Hin—

K

client

— = O 3
Lol W .

On the client side, if the connection is accepted, a socket is successfully created
and the client can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from
their sockets.

TCP versus UDP as a Transport Layer
Protocol:

TCP

Reliable, guaranteed

Connection-Oriented

Used in applications that
require safety guarantee. (e.g.
file applications.)

Flow control, sequencing of
packets, error-control.

Uses byte stream as unit of
transfer. (stream sockets)

Allows two-way data exchange,
once the connection is
established. (full-duplex)

UDP

Unreliable. Instead, prompt
delivery of packets.

Connectionless

Used in media applications. (e.g.
video or voice transmissions.)

No flow or sequence control,
handled manually.

Uses datagrams as unit of
transfer. (datagram sockets)

Allows data to be transferred in
one direction at once. (half-
duplex)

TCP Vs UDP

Socket Programming

Why Programming Sockets!?
Creating network applications needs sockets to communicate with client/server.
Basics you should know about.

Two types of network applications.
TCP or UDP?
Programming languages?

The application developer has control of everything on the
application-layer side of the socket; however, it has little
control of the transport-layer side.

controlled by

Al

controlled by 4 L
rocess licat
ot Ee] | i
developer ¥ L] - 1.
controlled by | |TCP with Eﬁ?fv;::rsh g;g:zgr|ilr:agd by
operating | |buffers internet Ters,
- . system
system | |variables variables| | SY
host or host or
server server

Socket Programming with UDP

UDP provides unreliable transfer of groups of bytes (“datagrams”) between client
and server.

A datagram is a basic transfer unit associated with a packet-switched network.The
delivery, arrival time, and order of arrival need not be guaranteed by the network.

No handshaking.
Sender explicitly attaches |IP address and port of destination to each packet.

Server must extract IP address, port of sender from received packet.

Client/server socket interaction: UDP

Server (running on hostid) Client
create socket, create socket,
port= x. clientSocket =
serverSocket = DatagramSocket()
DatagramSocket() 1

Create datagram with server IP and

l port=x; send datagram via
read datagram from clientSocket

serverSocket

write reply to

serverSocket 1 dat f
specifying — relr_a tSa al?r?m rom
client address, clientsocke

port number close 1

clientSocket

Example: Java client (UDP)

Client \

process Input: receives

packet (recall

Output: sends / thatTCP received
"byte stream"”)

packet (recall
that TCP sent uoP

"byte stream") I

packet
client UDP

keyboard monitor
A

input
strean

| inFromUser |<—

sendPacket
receivePacket

Example: Java client (UDP)

Create

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

{

input stream — gy fferedReader inFromUser =

Create’

client socket|—

Translate’
hostname to IP

new BufferedReader(new InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();

~ InetAddress IPAddress = InetAddress.getByName("hostname");

address using DNS |

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

Example: Java client (UDP), cont.

Create datagram with

data-to-send,| DatagramPacket sendPacket =
length, IP adder, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send daTagram iI—‘ clientSocket.send(sendPacket);

to server _
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Read datagram

from server |_> clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create {
datagram socket
at port 9876

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

-——— DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Receive serverSocket.receive(receivePacket);
________________ datagram

Create space for
received datagram

Example: Java server (UDP), cont

Get IP addr|
port #, of

String sentence = new String(receivePacket.getData());

— InetAddress IPAddress = receivePacket.getAddress();

sender|

Create datagram
to send to client

Write out

—int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

— DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,
port);

datagram [— serverSocket.send(sendPacket);

to socket

}
) _
} End of while loop,

loop back and wait for

--- ;ano”rher-damgmm--------"--------------"-------"----""---""""

Socket-programming using TCP

reliable transfer of bytes from one process to another.
Client must contact server

server process must first be running

server must have created socket (door) that welcomes client’s contact
Client contacts server by:

creating client-local TCP socket

specifying IP address, port number of server process

When client creates socket: client TCP establishes connection to server TCP

When contacted by client, server TCP creates new socket for server
process to communicate with client

» allows server to talk with multiple clients

» source port humbers used to distinguish clients

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()
_r]
TCP
wait for iNComing 4= == == = == = = -y CrAtesocket,
connection request M connect to hostid, port=x

clientSocket =

connectionSocket =
Socket()

welcomeSocket.accept()

l send request using
read I‘equest from / clientSocket
connectionSocket
write reply to v

connectionSocket —3 read reply from
clientSocket

l

close 1 1
connectionSocket close

~ Stream jargon

A stream is a sequence of ypoard monitor
characters that flow into or out of l !
a process. -

An input stream is attached to / Sitr;(g;:é

some input source for the process, Client C

e.g., keyboard or socket. process

An output stream is attached to
an output source, e.g., monitor or
socket.

outToServer |<—

inFromServer |—>

to network from'network

Socket programming with TCP

Example client-server app:

|) client reads line from standard
input (inFromUser stream) ,

sends to server via socket
(outToServer stream)

2) server reads line from socket

3) server converts line to uppercase,
sends back to client

4) client reads, prints modified line
from socket (inFromServer

stream)

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;

String modifiedSentence;

Create]

input s’rr'eam__' BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

Create’]

client socket, — Socket clientSocket = new Socket("hostname", 6789);

connect to server
Create DataOutputStream outToServer =

output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket

Example:

input stream
attached to socket

Send line
to server

Read line’

Java client (TCP), cont.

new BufferedReader(new
InputStreamReader(clientSocket.getinputStream()));

Create | BufferedReader inFromServer =

sentence = inFromUser.readLine();
—> outToServer.writeBytes(sentence + '\n');

—» modifiedSentence = inFromServer.readLine();

from server_

System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{
String clientSentence;

Create String capitalizedSentence;

i
welcom ng socket —> ServerSocket welcomeSocket = new ServerSocket(6789);
at port 6789

Wait, on welcoming while(true) {

socket for ConTaCT > Socket connectionSocket = welcomeSocket.accept();
by client_
: — BufferedReader inFromClient =
Create input —+ new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket

Example: Java server (TCP), cont

Create output|
stream, attached

DataOutputStream outToClient =
to socket |—

new DataOutputStream(connectionSocket.getOutputStream());

Read in line
from socket

— clientSentence = inFromClient.readLine();
capitalizedSentence = clientSentence.toUpperCase() + \n';

to socket | outToClient.writeBytes(capitalizedSentence);

} _
} End of while loop,

loop back and wait for
_ano’rher client connection

Write out Iine:l
}

