
Socket Programming: Creating

Network Applications

 Socket Programming with UDP

 Socket Programming with TCP

QUICK REVIEW

 What is a SOCKET?
 To the kernel, a socket is an endpoint of communication.
 To an application, a socket is a file descriptor that lets the application

read/write from/to the network.

 Clients and servers communicate with each by reading from
and writing to socket descriptors.

 Kinds of Sockets:
 Datagram Sockets (or UDP Sockets).
 Steam Sockets (or TCP Sockets)
 Row Sockets (or Raw IP sockets)

1

Where is the socket programming interface in relation to the protocol stack?

The Socket Interface :

2

Socket API

Where is the socket programming interface in relation to the protocol stack?

The Socket Interface :

3

Socket API

Where is the socket programming interface in relation to the protocol stack?

Transport Layer

Application Layer

The Socket Interface :

4

5

 On the server-side: A server has a socket that is bound to a specific port
number. The server just waits, listening to the socket for a client to make a
connection request.

 On the client-side: The client knows the hostname of the machine on which the
server is running and the port number on which the server is listening.

 If everything goes well, the server accepts the connection. The server gets a
new socket bound to the same local port and also has its remote endpoint set
to the address and port of the client.

 On the client side, if the connection is accepted, a socket is successfully created
and the client can use the socket to communicate with the server.

 The client and server can now communicate by writing to or reading from
their sockets.

TCP versus UDP as a Transport Layer

Protocol:

TCP UDP

 Reliable, guaranteed

 Connection-Oriented

 Used in applications that
require safety guarantee. (e.g.
file applications.)

 Flow control, sequencing of
packets, error-control.

 Uses byte stream as unit of
transfer. (stream sockets)

 Allows two-way data exchange,
once the connection is
established. (full-duplex)

 Unreliable. Instead, prompt
delivery of packets.

 Connectionless

 Used in media applications. (e.g.
video or voice transmissions.)

 No flow or sequence control,
handled manually.

 Uses datagrams as unit of
transfer. (datagram sockets)

 Allows data to be transferred in
one direction at once. (half-
duplex)

6

TCP Vs UDP

TCP UDP

7

Socket Programming
 Why Programming Sockets?

 Creating network applications needs sockets to communicate with client/server.

 Basics you should know about.
 Two types of network applications.

 TCP or UDP?

 Programming languages?

 The application developer has control of everything on the
application-layer side of the socket; however, it has little
control of the transport-layer side.

8

Socket Programming with UDP

 UDP provides unreliable transfer of groups of bytes (“datagrams”) between client

and server.

• A datagram is a basic transfer unit associated with a packet-switched network. The

delivery, arrival time, and order of arrival need not be guaranteed by the network.

 No handshaking.

 Sender explicitly attaches IP address and port of destination to each packet.

 Server must extract IP address, port of sender from received packet.

9

Client/server socket interaction: UDP

Server (running on hostid)

close

clientSocket

read datagram from

clientSocket

create socket,

clientSocket =

DatagramSocket()

Client

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket,

port= x.

serverSocket =

DatagramSocket()

write reply to

serverSocket

specifying

client address,

port number

read datagram from

serverSocket

10

11

Example: Java client (UDP)

se
n

d
P

a
ck

e
t

to network from network

re
ce

iv
e

P
a

ck
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP

packet

input

stream

UDP

packet

UDP

socket

Output: sends
packet (recall
that TCP sent
“byte stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

12

Example: Java client (UDP)

import java.io.*;

import java.net.*;

class UDPClient {

public static void main(String args[]) throws Exception

{

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

13

Example: Java client (UDP), cont.

DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =

new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);

clientSocket.close();

}

}

Create datagram with
data-to-send,

length, IP adder, port

Send datagram
to server

Read datagram
from server

14

Example: Java server (UDP)

import java.io.*;

import java.net.*;

class UDPServer {

public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];

byte[] sendData = new byte[1024];

while(true)

{

DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

15

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);

}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

16

Socket-programming using TCP

 reliable transfer of bytes from one process to another.

Client must contact server

 server process must first be running

 server must have created socket (door) that welcomes client’s contact

Client contacts server by:

 creating client-local TCP socket

 specifying IP address, port number of server process

 When client creates socket: client TCP establishes connection to server TCP

 When contacted by client, server TCP creates new socket for server

process to communicate with client

 allows server to talk with multiple clients

 source port numbers used to distinguish clients

17

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid) Client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

18

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client
process

client TCP
socket

Stream jargon
 A stream is a sequence of

characters that flow into or out of

a process.

 An input stream is attached to

some input source for the process,

e.g., keyboard or socket.

 An output stream is attached to

an output source, e.g., monitor or

socket.

19

Socket programming with TCP

Example client-server app:

1) client reads line from standard
input (inFromUser stream) ,

sends to server via socket
(outToServer stream)

2) server reads line from socket

3) server converts line to uppercase,

sends back to client

4) client reads, prints modified line
from socket (inFromServer

stream)

20

Example: Java client (TCP)

import java.io.*;

import java.net.*;

class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence;

String modifiedSentence;

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =

new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

21

Example: Java client (TCP), cont.

BufferedReader inFromServer =

new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

}

Create
input stream

attached to socket

Send line
to server

Read line
from server

22

Example: Java server (TCP)
import java.io.*;

import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception

{

String clientSentence;

String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =

new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

23

Example: Java server (TCP), cont

DataOutputStream outToClient =

new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);

}

}

}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

